
XML Graphs in Program Analysis

Anders Møller and Michael I. Schwartzbach
BRICS, Department of Computer Science

University of Aarhus, Denmark

{amoeller,mis}@brics.dk

Abstract

XML graphs have shown to be a simple and effective formalism
for representing sets of XML documents in program analysis. It
has evolved through a six year period with variants tailored for a
range of applications. We present a unified definition, outline the
key properties including validation of XML graphs against differ-
ent XML schema languages, and provide a software package that
enables others to make use of these ideas. We also survey four very
different applications: XML in Java, Java Servlets and JSP, trans-
formations between XML and non-XML data, and XSLT.

1 Introduction

Many interesting programming formalisms deal explicitly with
XML documents. Examples range from domain-specific lan-
guages, such as XSLT and XQuery, to general-purpose languages,
such as Java in which XML documents may be handled by special
frameworks or simply as text.
When such programs are the subject of static analyses, it is nec-

essary to obtain a formal model of sets of XML documents or frag-
ments, typically to represent conservative approximations of the
possible results at specific program points. Several such models
have been proposed, mainly based on the observation that formal
tree languages capture many desired properties since XML docu-
ments are essentially trees [38, 19]. For practical use, a good and
versatile model aimed at static analysis must satisfy some particular
requirements:

• it must capture all features in XML that are relevant for vali-
dation, not just an idealized subset – in particular, we cannot
ignore attributes, character data, or interleaved contents;

• it must provide a finite-height lattice structure for use in
dataflow analysis with fixed-point iteration;

• it must be able to express sets of XML documents described

by common schema formalisms, such as DTD [7] and XML
Schema [39];

• it must allow static validation against common schema for-
malisms and also navigation with XPath expressions [14]; and

• it must be fully implemented.

In this paper we describe the XML graph model, which has matured
through substantial practical experience in building static analyses
of languages that manipulate XML. We also survey four different
applications, showing the versatility of the model. XML graphs are
fully implemented and available in an open source software pack-
age.

2 XML Graphs

W3C’s DOM [1] and XDM [17] both provide a view of XML doc-
uments as unranked, labeled, finite trees. For example, elements
correspond to labeled nodes with children representing the element
contents. XML graphs generalize the notion of XML trees in a
number of directions:

• Character data text, attributes values, and element/attribute
names are described by regular string languages rather than
by single strings.

• In XML trees, the content of an element is always described
as an ordered sequence. XML graphs add special choice and
interleave nodes describing more general content models.

• Loops are permitted in XML graphs.

• Some applications (see Section 3.1) involve a notion of gaps,
which are represented in XML graphs by a variant of choice
nodes as explained below.

A single XML graph generally represents a set of XML documents,
namely those that can be obtained by “unfolding” the XML graph,
starting from a root node, and then following all possible combi-
nations of choices and interleavings described by the choice and
interleave nodes and all possible character data text, attributes val-
ues, and element/attribute names described by the regular string lan-
guages. This is all defined formally in the next section.

EXAMPLE The XML graph shown in Figure 1 represents the set
of XML documents consisting of one ul element that contains a
sequence of zero or more li elements, each containing a numeral
(described by the regular language [0−9]+): We here use a choice
node and a sequence node arranged in a loop for expressing the
unbounded number of li elements.

[0−9]
+

li

ul

21

seqseq

choice

c

s
1 s2

e
2

t

1
e

Figure 1. Example XML graph.

2.1 Definition

The various applications of XML graphs (or summary graphs, as
they were called in earlier papers) have involved different variants,
tailored for the different needs. We here present a coherent defini-
tion of XML graphs that fits closely with our newest and complete
implementation.
An XML graph, χ, is a quintuple:

χ = (N ,R,contents,strings,gaps)

The finite setN =NE ∪NA∪NT ∪NS ∪NC∪NI ∪NG consists
of nodes of various kinds: element nodes (NE), attribute nodes
(NA), text nodes (NT), sequence nodes (NS), choice nodes (NC),
interleave nodes (NI), and gap nodes (NG). The graph has a set of
root nodes R⊆N .
The map contents describes the outgoing edges for the different

kinds of nodes:

contents :NE ∪NA →N
contents :NS ∪NI →N ∗

contents :NC ∪NG → 2N

The map strings : NT ∪NA ∪NE → S , where S is a family of
regular string languages over the Unicode alphabet, assigns sets of
strings to nodes of certain kinds for describing text (character data
or attribute values) and names of elements and attributes.

The map gaps describes information about gaps:

gaps : G → 2NG × 2NG ×Γ×Γ×T

where G is a fixed set of gap names, T is a set of schema type
names (equipped with top and bottom), and Γ = 2{OPEN,CLOSED}.
Let open, removed, egaps, agaps, and type be defined by

gaps(g) = (open(g),removed(g),egaps(g),agaps(g), type(g))

Informally, open and removed specify which nodes may contain
open or removed gaps; egaps and agaps describe the presence
of gaps in element contents and attributes, respectively; and type
records the types associated with typed gaps. The value {OPEN}
means that one or more gaps of the given name are present,
{CLOSED} means that none are present, and {OPEN,CLOSED}
means that the gaps are present for some unfoldings but absent for
others.

Not all applications involve gaps; for those that do not, the gaps
component is simply ignored.

To simplify validation (see Section 2.3) we require that inter-
leave nodes never appear nested within content model descriptions
nor in attribute value descriptions. (This requirement is expressed
formally in [23]).

We call two XML graphs compatible if they agree on the values
of N , G , S , T , and contents(n) for n ∈ NE ∪NA ∪NS ∪NI .
Each family of compatible XML graphs forms a finite-height lattice
using a pointwise subset ordering. This is crucial when using XML
graphs in dataflow analysis.

The language, L(χ), of an XML graph χ is a set of finite strings
defined by

L(χ) = {x | ∃n ∈ R : n⇒ x ; t ; a}

where the unfolding relation,⇒, is defined inductively according to
Figure 2. Intuitively, the relation n⇒ x ; t ; a holds when unfolding
from node n in the XML graph may produce XML content x, text t,
and attributes a. The operator ‖ produces all possible interleavings
(i.e. the shuffle) of the given XML contents; the operator ⊕ merges
sets of attributes in all possible ways where, if two attributes have
the same name then one of them overrides the other. Note that not
all constituents of gaps are used in the definition of the unfolding
relation: in XACT (Section 3.1), egaps, agaps, and type are used in
the dataflow transfer functions.

n ∈ NE s ∈ strings(n) contents(n) ⇒ x ; t ; a

n⇒ <s a> x </s> ; ε ; ∅
[element]

n ∈ NT s ∈ strings(n)

n⇒ s ; s ; ∅
[text]

n ∈ NA s ∈ strings(n) contents(n) ⇒ x ; t ; a t 6= ∅

n⇒ ε ; ε ; s="t"
[attribute]

n ∈ NC ∪NG m ∈ contents(n) m⇒ x ; t ; a

n⇒ x ; t ; a
[choice / gap]

n ∈ NS contents(n) =m1 · · ·mk
mi⇒ xi ; ti ; ai a ∈ a1⊕ · · ·⊕ ak

n⇒ x1 · · ·xk ; t1 · · · tk ; a
[sequence]

n ∈ NI contents(n) = m1 · · ·mk mi⇒ xi ; ti ; ai
x ∈ x1 ‖ · · · ‖ xk a ∈ a1⊕ · · ·⊕ ak

n⇒ x ; ε ; a
[interleave]

n ∈ NG n ∈ open(g)

n⇒ <[g]> ; ∅ ; ∅
[open content gap]

n ∈ NA s ∈ strings(n) contents(n) ∈ open(g)

n⇒ ε ; ε ; s=[g]
[open attribute gap]

n ∈ NG n ∈ removed(g)

n⇒ ε ; ∅ ; ∅
[removed content gap]

n ∈ NA contents(n) ∈ removed(g)

n⇒ ε ; ε ; ∅
[removed attribute]

Figure 2. Inference rules for unfolding of XML graphs.

EXAMPLE The XML graph from Figure 1 can be described for-
mally as follows.

N = {e1,e2,s1,s2,c, t}
R = {e1}

contents = [e1 7→ c, e2 7→ t, s1 7→ ε, s2 7→ e2 c, c 7→ {s1,s2}]
strings = [e1 7→ {ul}, e2 7→ {li}, t 7→ L([0−9]+)]

gaps= []

Its language contains, for example, these three XML documents:

42

4287

We implicitly assume that entity references have been expanded,
treat CDATA sections as plain character data, and ignore attribute
order, processing instructions, and comments, since these features
are irrelevant for validation. XML namespaces are handled by ex-
panding qualified names to the form {URI}localname.

2.2 Relations to Other Formalisms

Clearly, the notion of XML graphs is closely connected to, in partic-
ular, RELAX NG [15], regular expression types [19] (as explained
in [8] for an early variant of XML graphs), and regular tree gram-
mars [38]. Intuitively, an XML graph is essentially a graphical rep-
resentation of those formalisms. However, loops in XML graphs
may lead to content models that are not necessarily regular but gen-
erally context-free.
The main reason for using XML graphs instead of these alter-

natives is that XML graphs naturally form a finite-height lattice,
as explained above. Additionally, to be able to express schemas
written in XML Schema, we cannot ignore text, attributes, or in-
terleaved content models. Finally, maintaining the gap information
is important in, for example, the XACT program analyzer (see Sec-
tion 3.1).
In [23], a language called Restricted RELAX NG is defined as a

subset of RELAX NG. The subset limits expressiveness to single-
type tree grammars [38], prohibits context sensitive attribute pat-
terns, and limits the use of interleave patterns to top-level content
models. Every schema written in XML Schema can be converted
into a Restricted RELAX NG schema that validates the same set
of documents, and Restricted RELAX NG is much simpler than
the full XML Schema language. Moreover, we can validate XML
graphs against Restricted RELAX NG schemas more easily than if
using the full RELAX NG language.

2.3 Operations on XML Graphs

The various applications of XML graphs involve a number of inter-
esting operations.

Representation of XML documents, templates, and schemas
XML documents are merely special cases of XML graphs.
XML templates, which are used in XACT (Section 3.1), add
various kinds of gaps, which can be represented as gap nodes
in XML graphs. Additionally, every schema written in DTD,
XML Schema, or Restricted RELAX NG can be converted
into an equivalent XML graph1.

1A few obscure features in XML Schema datatypes go beyond
regular languages; if the need should ever arise, these can be ac-
commodated by augmenting the strings map. For technical details,
see [23, 26].

Closure properties A central operation when XML graphs are
used in dataflow analysis is computing the least upper bound
of two compatible XML graphs, which is trivial by the defini-
tion in Section 2.1.

Note that XML graphs are also closed under, in particular,
language union: simply rename nodes to avoid conflicts and
then join the root sets. However, we have never encountered
a need for performing this operation in practice.

Validation All our applications of XML graphs involve validation,
that is, checking whether or not every XML document inL(χ)
for a given XML graph χ is valid relative to a given schema.
Our algorithm, which is explained in [23], heavily exploits
the restrictions in Restricted RELAX NG. It works much like
an ordinary XML Schema processor by recursively traversing
χ, starting at the roots, and for each element, attribute, or text
node checking the constraints specified by the schema. This is
done by encoding content models and schema definitions as fi-
nite string automata over a common vocabulary and checking
inclusion of their languages. Loops are handled coinductively
using memoization. Compared to validation algorithms based
on more powerful models, such as [19] or [22], this approach
exploits the single-type tree language property of the schema
to obtain a simpler algorithm and to provide more informative
error messages.

XPath evaluation XPath is often used for navigating in XML
trees. The ordinary semantics of XPath expressions can be
generalized from working on XML trees to XML graphs.
Given an XPath location path p and an XML graph χ, we
have an algorithm that can approximate, for each node n ∈
NE ∪NA ∪NT in χ, whether or not the corresponding el-
ement, attribute, or text is definitely or maybe selected by p
in L(χ). This is particularly useful when analyzing XACT
programs. However, it can also be used for extending the val-
idator to check element prohibitions (e.g., that form elements
cannot be nested in XHTML).

Additionally, the XACT analyzer (Section 3.1) models a range of
basic operations on XML templates as transfer functions on XML
graphs. An example is the plug operation, which is used for insert-
ing XML templates or strings into gaps in other XML templates.

2.4 Implementation

The Java library dk.brics.schematools [26] consisting of
16,000 lines of code provides the following functionality:

• Representation of XML graphs, including various conve-
nience methods for building, traversing, and storing XML
graphs.

• Representation of schemas written in Restricted RELAX NG,
including conversion from DTD and XML Schema and to
XML graphs.

• Validation of XML graphs relative to Restricted RELAX NG
schemas, with useful messages when invalidity is detected.

• Evaluation of XPath location path expressions on XML
graphs.

• A command-line interface for performing validation and con-
version for the different formalisms, as a supplement to the
API.

Independently of XML graphs, the schema conversion ability fills
a niche: Sun’s RELAX NG Converter [21] supports conversion
from XML Schema to RELAX NG but has several deficiencies;
Trang [11] supports approximating conversion in the other direction
only (in addition to supporting DTD). By combining schema con-
version with validation, dk.brics.schematools can check lan-
guage inclusion between schemas written in XML Schema.

3 Four Applications of XML Graphs

XML graphs have proved to be a useful tool in several applica-
tions of which we survey four examples selected from the full
range [5, 9, 25, 23, 6, 36, 3, 24, 35]. They all use different aspects of
the package and the languages they consider span a wide spectrum.
Despite their differences, each application follows a common pat-
tern. First, a flow analysis is performed, which of course depends
closely on the particular source language. Second, XML graphs
are constructed for the interesting program points; again, the tech-
niques for doing this depends on the application domain. Third,
the resulting XML graphs are analyzed, generally using the static
validation tool.

3.1 XACT

The XACT language extends Java with domain-specific support for
manipulating XML documents [25, 23]. It is available in an open
source implementation from http://www.brics.dk/Xact/.
It is based of the notion of XML templates, which contain named

gaps. Templates may by plugged together and may be decon-
structed in various manners guided by XPath expressions. The tem-
plates are implemented as an immutable datatype in a Java frame-
work. A preprocessor adds a layer of domain-specific syntax. A
comparison between XACT and other languages for XML manipu-
lation is presented in [37].
The following is an example of an XACT program that generates

an XHTML presentation of a phone list extracted from an XML
collection of business cards, in a way that exhibits the various lan-
guage features:

import dk.brics.xact.*;

public class PhoneList {

@DefaultXPathNamespace

public static final String b =

"http://businesscard.org";

@DefaultConstantNamespace

public static final String h =

"http://www.w3.org/1999/xhtml";

@Namespace

public static final String s =

"http://www.w3.org/2001/XMLSchema";

public @Type("h:html[s:string TITLE, h:Flow MAIN]") XML

wrapper;

public @Type("h:html") XML

transform(@Type("b:cardlist") XML cardlist) {

return wrapper.plug("TITLE", "My Phone List")

.plug("MAIN", makeList(cardlist));

}

private XML makeList(XML x) {

XML r = [[<[CARDS]>]];

for (XML c : x.select("card[phone]"))

r = r.plug("CARDS",

[[

<{ c.select("name/text()") }>,

phone: <{c.select("phone/text()") }>

<[CARDS]>]]);

return r.close();

}

private void setDefaultWrapper(String color) {

wrapper = [[<html>

<head>

<title><[s:string TITLE]></title>

</head>

<body bgcolor=[s:string COLOR] >

<h1><[s:string TITLE]></h1>

<[h:Flow MAIN]>

</body></html>]].plug("COLOR", color);

}

public static void main(String[] args)

throws java.io.IOException {

PhoneList pp = new PhoneList();

pp.setDefaultWrapper("white");

XML cardlist = XML.get("cards.xml", "b:cardlist");

XML xhtml = pp.transform(cardlist);

System.out.println(xhtml);

}

}

The static analysis challenge for XACT is to decide if the possible
values of XML expressions are guaranteed to be valid according to
the given (optional) XML Schema type annotations. In the above
example, this includes a guarantee that the output will always be
valid XHTML if the input is a valid collection of business cards.

XML Graph Construction

Since XACT is an extension of full Java, the analysis must first con-
struct an ordinary flow graph for the Java program. This is done us-
ing the Soot framework [41]. Subsequently, we perform a standard
dataflow analysis [20] but with the highly specialized lattice struc-
ture of XML graphs described in Section 2.1. The transfer functions
conservatively model the abstract semantics of the template opera-
tions. While these are certainly intricate in their details, they are
actually conceptually simple. The gaps maps of XML graphs are
here used to keep track of whether gaps in the combined templates
are necessarily or possibly left open by plug operations.

To handle input and cast operations, we need to model XML
Schema types directly as XML graphs, using the embedding de-
scribed in Section 2.3. The precision of our analysis is boosted by
the fact that such types can be modeled exactly without resorting to
conservative approximations.

XML Graph Analysis

After the dataflow analysis, each XML expression has associated
an XML graph that describes a superset of the possible XML val-
ues that may be the results of runtime evaluation. The XACT tool
may use this information to check a number of properties. Valid-
ity of annotations reduces to the static validity check described in
Section 2.3. Also, for plug operations it is checked that an open
gap with the given name is present in the XML template. Finally,
a warning is issued if an XPath expression will always result in an
empty node sequence.

SEQ

SEQ

2
31

xmlns bodyhead

form

1

2

title

4

h3
2

hr

3 61

action

1

2
3

4

html

CHOICE

5

CHOICE

1

2
type

name value

input input

size

div

small

align

b

method

type

SEQ

SEQ

SEQ

1

2

1

2

SEQ SEQ

phoneL

{http://..}

{Enter name} CDATA
L

{right}

{Session initiated [..]}

contextpath{ /show}

{Phone:}

{POST}

{text}

{NAME}

{submit}

{lookup}

{1}

Figure 3. XML graph for servlet example.

3.2 Java Servlets and JSP

The XACT project introduces a novel extension of Java for manip-
ulation of XML templates. In contrast, the common frameworks of
Java Servlets and JSP work at a lower level where XML documents
are produced one character at a time on an output stream. (JSP
templates are merely converted into servlets.) This poses a sub-
stantially harder problem for static validation since now also well-
formedness of the generated XML documents must be determined
by the analysis. Also, the control flow of the application is more im-
plicit since individual servlets may transfer control based on string
valued URLs. The following example program shows some of the
many challenges that may arise:

public class Entry extends javax.servlet.http.HttpServlet {

protected void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

HttpSession session = request.getSession();

String url =

response.encodeURL(request.getContextPath()+"/show");

session.setAttribute("timestamp", new Date());

response.setContentType("application/xhtml+xml");

PrintWriter out = response.getWriter();

Wrapper.printHeader(out, "Enter name", session);

out.print("<form action=\""+url+"\" method=\"POST\">"+

"<input type=\"text\" name=\"NAME\"/>"+

"<input type=\"submit\" value=\"lookup\"/>"+

"</form>");

Wrapper.printFooter(out);

}

}

public class Show extends javax.servlet.http.HttpServlet {

protected void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException {

Directory directory =

new Directory("ldap://ldap.widgets.org");

String name = misc.encodeXML(request.getParameter("NAME"));

response.setContentType("application/xhtml+xml");

PrintWriter out = response.getWriter();

Wrapper.printHeader(out, name, request.getSession());

out.print("Phone: "+directory.phone(name));

Wrapper.printFooter(out);

}

}

public class Wrapper {

static void printHeader(PrintWriter pw, String title,

HttpSession session) {

pw.print("<html xmlns=\"http://www.w3.org/1999/xhtml\">"+

"<head><title>"+title+"</title></head><body>"+

"<hr size=\"1\"/>"+

"<div align=\"right\"><small>"+

"Session initiated ["+

session.getAttribute("timestamp")+"]"+

"</small></div><hr size=\"1\"/>"+

"<h3>"+title+"</h3>");

}

static void printFooter(PrintWriter pw) {

pw.print("<hr size=\"1\"/></body></html>");

}

}

An obvious question is whether the doGet and doPost methods
produce valid XHTML as output? In fact, we would like to verify
many other properties of the above application, but they all hinge
on first understanding the generated XHTML documents. In [24],
a program analysis that attacks these problems is presented, based
on XML graphs. The paper [35] discusses the problem of analyz-
ing SAX stream filters, which, to some extent, can be reduced to
analyzing servlets.

XML Graph Construction

Since the servlets work on strings values, we first employ an exist-
ing string analysis that computes regular languages for the possible
values of all string expressions [10]. This analysis takes into ac-
count the basic control flow of the Java programs.
Well-formedness of the generated XML data is then performed

by combining the theories of balanced grammars by Knuth [27] and
grammar approximations by Mohri and Nederhof [34]. Finally, the
transformed grammar is rather directly expressed as an XML graph,
which summarizes the results of these analyses.
The XML graph for the example program is shown in Figure 3.

XML Graph Analysis

Once we have XML graphs for the possible contents of the out-
put streams, we can, again, apply the static validation algorithm
to ensure that only valid XHTML is produced. However, a more
specific analysis of these graphs can answer other interesting ques-
tions about servlet applications. By analyzing the possible values
of action URLs in forms it is possible to determine the control flow
between individual servlets. In the above example, this knowledge
will allow us to determine that the timestamp attribute is available
in the session state when the Show servlet is executed. Also, by
further analyzing the form fields inside the generated XHTML doc-
uments, we can guarantee that the request parameter NAME is always
present as well.

3.3 XSugar

The XSugar project [6] provides a framework for specifying and
maintaining dual syntax for XML languages. A typical situation
of this kind is the XML schema language RELAX NG [15] that
has and alternative, compact, non-XML syntax [13]. Other lan-
guages with dual syntax include BibTeXML [18] and the Wiki no-
tation [29]. As an example, consider the XML document

<students xmlns="http://studentsRus.org/">

<student sid="19701234">

<name>John Doe</name>

<email>john_doe@notmail.org</email>

</student>

<student sid="19785678">

<name>Jane Dow</name>

<email>dow@bmail.org</email>

</student>

</students>

with the following alternative syntax:

John Doe (john_doe@notmail.org) 19701234

Jane Dow (dow@bmail.org) 19785678

The XML syntax may be specified in XML Schema and the alterna-
tive syntax could be specified through an XSLT stylesheet (gener-
ating plain text). However, this approach has some inherent weak-
nesses: consistency must be maintained between the two syntaxes,
and a separate translator from alternative to XML syntax must be
programmed. XSugar allows a simultaneous specification of both
syntaxes in the form of a context-free grammar with dual right-hand
sides. For our example, the specification looks as follows:

xmlns = "http://studentsRus.org/"

Name = [a-zA-Z]+(\ [a-zA-Z]+)*

Email = [a-zA-Z._]+\@[a-zA-Z._]+

Id = [0-9]{8}

NL = \r\n|\r|\n

file : [persons p] = <students> [persons p] </>

persons : [person p] [NL] [persons more] =

[person p] [persons more]

: =

person : [Name name] _ "(" [Email email] ")" _ [Id id] =

<student sid=[Id id]>

<name> [Name name] </>

<email> [Email email] </>

</>

The XSugar tool analyzes the grammar to ensure reversibility of
the translation between the two versions, which involves an ap-
proximate decision procedure for ambiguity of grammars [4]. The
remaining problem, which is relevant for this paper, is to decide
whether the XSugar specification agrees with an original XML
schema specification of the XML language, such as this one:

<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://studentsRus.org/"

xmlns:s="http://studentsRus.org/"

elementFormDefault="qualified">

<element name="students">

<complexType>

<sequence minOccurs="0" maxOccurs="unbounded">

<element ref="s:student"/>

</sequence>

</complexType>

</element>

<element name="student">

<complexType>

<sequence>

<element name="name" type="s:Name"/>

<element name="email" type="s:Email"/>

</sequence>

<attribute name="sid" type="s:Id"/>

</complexType>

</element>

<simpleType name="Id">

<restriction base="string">

<pattern value="[0-9]{8}"/>

</restriction>

</simpleType>

<simpleType name="Name">

<restriction base="string">

<pattern value="[a-zA-Z]+([a-zA-Z]+)*"/>

</restriction>

</simpleType>

<simpleType name="Email">

<restriction base="string">

<pattern value="[a-zA-Z._]+@[a-zA-Z._]+"/>

</restriction>

</simpleType>

</schema>

XML Graph Construction

From an XSugar specification, it is simple to extract an XML graph
that describes all XML documents that can be generated by the
XML productions:

• each nonterminal becomes a choice node with a child for each
of its productions;

seq

seq

21

seq

choice

students

student

Name

emailname

EmailId

sid

Figure 4. XML graph for XSugar example.

• a production becomes a sequence node if ordered and an in-
terleave node if unordered, and a child node is made for each
item;

• for a nonterminal item, the node is the one corresponding to
the nonterminal;

• for a regular expression item, the node is a text node labeled
with the regular expression. and quoted literal items and
whitespace items are treated as regular expression items;

• for an element item, the node is an element node with a cor-
responding name and with a sequence child node describing
the attributes and contents, and attributes similarly become at-
tribute nodes.

As a simple optimization, we may omit choice nodes and sequence
nodes that have exactly one child. For the student information ex-
ample, the resulting XML graph is shown in Figure 4.

XML Graph Analysis

Static validation of the XSugar program is simply obtained by
means of the main algorithm from Section 2.3. If we had
made some mistakes, for example changed the definition of Id to
[0-9]{5,8} and swapped the order of the name and email ele-
ments in the XSugar specification, the output would instead be like
this:

*** Validation error

Source: element {http://studentsRus.org/}student at

students.xsg line 15 column 10

Schema: students.xsd line 20 column 7

Error: invalid attribute value: sid="00000"

*** Validation error

Source: element {http://studentsRus.org/}student at

students.xsg line 15 column 10

Schema: students.rng line 16 column 7

Error: invalid contents:

<{http://studentsRus.org/}email/>

<{http://studentsRus.org/}name/>

Clearly, such error messages are useful for locating and correcting
the errors.

3.4 XSLT

An obvious challenge in the area of static validation is posed by
XSLT stylesheets [12]: under the assumption that the input is valid
relative to the input schema, is the output of the transformation al-
ways valid relative to the output schema? This fundamental prob-
lem was first solved and implemented in our paper [36] and gen-
eralized to XSLT 2.0 in [28]. Earlier work in this area have only
provided partial solutions [2, 40, 16] or have only looked at ide-
alized languages [33, 31, 32, 30]. As an instance of this problem,
consider documents such as this:

<registrations xmlns="http://eventsRus.org/registrations/">

<name id="117">John Q. Public</name>

<group type="private" leader="214">

<affiliation>Widget, Inc.</affiliation>

<name id="214">John Doe</name>

<name id="215">Jane Dow</name>

<name id="321">Jack Doe</name>

</group>

<name>Joe Average</name>

</registrations>

which is described by this DTD schema:

<!ELEMENT registrations (name|group)*>

<!ELEMENT name (#PCDATA)>

<!ATTLIST name id ID #REQUIRED>

<!ELEMENT group (affiliation,name*)>

<!ATTLIST group type (private|government) #REQUIRED>

<!ATTLIST group leader IDREF #REQUIRED>

<!ELEMENT affiliation (#PCDATA)>

Consider now the following XSLT stylesheet:

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:reg="http://eventsRus.org/registrations/"

xmlns="http://www.w3.org/1999/xhtml">

<xsl:template match="reg:registrations">

<html>

<head><title>Registrations</title></head>

<body>

<xsl:apply-templates/>

</body>

</html>

</xsl:template>

<xsl:template match="*">

<xsl:value-of select="."/>

</xsl:template>

<xsl:template match="reg:group">

<table border="1">

<thead>

<tr>

<td>

<xsl:value-of select="reg:affiliation"/>

<xsl:if test="@type=’private’">®</xsl:if>

</td>

</tr>

</thead>

<xsl:apply-templates select="reg:name">

<xsl:with-param name="leader" select="@leader"/>

</xsl:apply-templates>

</table>

</xsl:template>

5

5.1

4

3.4

2

1

1.2

3

registrations

name

group

name

root

name

namegroup}

{

{

{

{

{

{

}{

}

}

}

}

}

{

registrations{

}

}

Figure 5. Flow graph for XSLT example.

<xsl:template match="reg:group/reg:name">

<xsl:param name="leader" select="-1"/>

<tr>

<td>

<xsl:value-of select="."/>

<xsl:if test="$leader=@id">!!!</xsl:if>

</td>

</tr>

</xsl:template>

</xsl:stylesheet>

This stylesheet transforms such documents into an XHTML presen-
tation that may be rendered as follows:

The question is then whether documents described by the input
schema will always be transformed into valid XHTML documents?

XML Graph Construction

Before the set of possible output documents can be described, it
is necessary to perform a flow analysis of the XSLT stylesheet.
Specifically, we wish to determine for each apply-templates in-
struction which template rules may be invoked when processing
some input document. In addition, we must also determine the
types and names of the possible context nodes when the template
is instantiated. Our algorithm defines a constraint system that de-
fines this information, which is then computed using a fixed-point
algorithm. A crucial component in this algorithm is to determine
the compatibility between select and match expressions relative
to the paths that are allowed by the input schema. Our algorithm is
heuristic and uses conservative approximations that are guided by a
extensive data mining of a collection of 603 stylesheets with a total
of 187,015 lines of code written by hundreds of different authors.
For our example stylesheet, the flow information is summarized as
shown in Figure 5.
Based on this flow graph, the details of the stylesheet and the in-

put schema, our algorithm constructs an XML graph that describes

seq

html

head

title

body

ol

repeat

li

CDATAL

li

table

choice

seq

thead border

td

tr {1}

repeat

seq

CDATAL

{®}

choice

seq

seq

CDATAL choice

seq

tr

td

{!!!}

{Registrations}

1 1

2
1

1 2

3

22

Figure 6. XML graph for XSLT example.

all possible output documents. Again, this is done using heuristics
that are guided by mining the extensive stylesheet samples. The
XML graph for our example is shown in Figure 6. The repeat ab-
breviate the choice–sequence loop used earlier, and the dashed lines
indicate template rules in the original stylesheet.

XML Graph Analysis

Once the XML graph has been constructed, we again rely on the
static validation algorithm from Section 2.3. In addition to this
result, we may analyze the XML graph further to provide warn-
ings about select expressions that never hit anything and template
rules that are never used. These are not necessarily errors in the
stylesheet, but presumably unintended by the programmer.

4 Conclusion

We have presented XML graphs as a convenient formalism for rep-
resenting sets of XML documents. XML graphs have been used in
a variety of analyses of programs that operate on XML data, includ-
ing the languages XACT, Java Servlets and JSP, XSugar, and XSLT.
The implementation is now available in an open source software
package for others to use.

References

[1] Vidur Apparao et al. Document Object Model (DOM)
level 1 specification, October 1998. W3C Recommendation.
http://www.w3.org/TR/REC-DOM-Level-1/.

[2] Philippe Audebaud and Kristoffer Rose. Stylesheet valida-
tion. Technical Report RR2000-37, ENS-Lyon, November
2000.

[3] Henning Böttger, Anders Møller, and Michael I.
Schwartzbach. Contracts for cooperation between Web
service programmers and HTML designers. Journal of Web
Engineering, 5(1):65–89, 2006.

[4] Claus Brabrand, Robert Giegerich, and Anders Møller. Ana-
lyzing ambiguity of context-free grammars. Technical Report
RS-06-09, BRICS, May 2006.

[5] Claus Brabrand, Anders Møller, and Michael I.
Schwartzbach. Static validation of dynamically gener-
ated HTML. In Proc. ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering,
PASTE ’01, pages 221–231, June 2001.

[6] Claus Brabrand, Anders Møller, and Michael I.
Schwartzbach. Dual syntax for XML languages. In
Proc. 10th International Workshop on Database Program-
ming Languages, DBPL ’05, volume 3774 of LNCS, pages
27–41. Springer-Verlag, August 2005.

[7] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler,
and François Yergeau. Extensible Markup Language (XML)
1.0 (third edition), February 2004. W3C Recommendation.
http://www.w3.org/TR/REC-xml.

[8] Aske Simon Christensen, Anders Møller, and Michael I.
Schwartzbach. Static analysis for dynamic XML. Technical
Report RS-02-24, BRICS, May 2002. Presented at Program-
ming Language Technologies for XML, PLAN-X ’02.

[9] Aske Simon Christensen, Anders Møller, and Michael I.
Schwartzbach. Extending Java for high-level Web service
construction. ACM Transactions on Programming Languages
and Systems, 25(6):814–875, 2003.

[10] Aske Simon Christensen, Anders Møller, and Michael I.
Schwartzbach. Precise analysis of string expressions. In Proc.
10th International Static Analysis Symposium, SAS ’03, vol-
ume 2694 of LNCS, pages 1–18. Springer-Verlag, June 2003.

[11] James Clark. Trang. http://www.thaiopensource.com/relaxng/

trang.html.

[12] James Clark. XSL transformations (XSLT), November 1999.
W3C Recommendation. http://www.w3.org/TR/xslt.

[13] James Clark. RELAX NG compact syntax, November 2002.
OASIS. http://relaxng.org/compact.html.

[14] James Clark and Steve DeRose. XML path language, Novem-
ber 1999. W3C Recommendation. http://www.w3.org/TR/xpath.

[15] James Clark and Makoto Murata. RELAX NG specifi-
cation, December 2001. OASIS. http://www.oasis-open.org/
committees/relax-ng/.

[16] Ce Dong and James Bailey. Static analysis of XSLT programs.
In Proc. 15th Australasian Database Conference, ADC ’04.
Australian Computer Society, January 2004.

[17] Mary Fernández, Ashok Malhotra, Jonathan Marsh, Marton
Nagy, and Norman Walsh. XQuery 1.0 and XPath 2.0 data
model (XDM), November 2006. W3C Proposed Recommen-
dation. http://www.w3.org/TR/xpath-datamodel/.

[18] Vidar Bronken Gundersen and Zeger W. Hendrikse. Bib-
TeXML, 2005. http://bibtexml.sourceforge.net/.

[19] Haruo Hosoya, Jerome Vouillon, and Benjamin C. Pierce.
Regular expression types for XML. ACM Transactions on
Programming Languages and Systems, 27(1):46–90, 2005.

[20] John B. Kam and Jeffrey D. Ullman. Monotone data flow
analysis frameworks. Acta Informatica, 7:305–317, 1977.
Springer-Verlag.

[21] Kohsuke Kawaguchi. RELAX NG converter.
http://wwws.sun.com/software/xml/developers/relaxngconverter/.

[22] Martin Kempa and Volker Linnemann. Type checking in
XOBE. In Proc. Datenbanksysteme für Business, Technologie
und Web, BTW ’03, volume 26 of LNI, February 2003.

[23] Christian Kirkegaard and Anders Møller. Type checking with
XML Schema in XACT. Technical Report RS-05-31, BRICS,
2005. Presented at Programming Language Technologies for
XML, PLAN-X ’06.

[24] Christian Kirkegaard and Anders Møller. Static analysis for
Java Servlets and JSP. In Proc. 13th International Static Anal-
ysis Symposium, SAS ’06, volume 4134 of LNCS. Springer-
Verlag, August 2006.

[25] Christian Kirkegaard, Anders Møller, and Michael I.
Schwartzbach. Static analysis of XML transformations
in Java. IEEE Transactions on Software Engineering,
30(3):181–192, March 2004.

[26] Christian Kirkegaard and Anders Møller.
dk.brics.schematools, 2006. http://www.brics.dk/schematools/.

[27] Donald E. Knuth. A characterization of parenthesis lan-
guages. Information and Control, 11:269–289, 1967.

[28] Søren Kuula. Practical type-safe XSLT 2.0 stylesheet author-
ing. Master’s thesis, Department of Computer Science, Uni-
versity of Aarhus, 2006.

[29] Bo Leuf and Ward Cunningham. The Wiki way: quick collab-
oration on the Web. Addison-Wesley, 2001.

[30] Sebastian Maneth, Alexandru Berlea, Thomas Perst, and Hel-
mut Seidl. XML type checking with macro tree transducers.
In Proc. 24th ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS ’05, pages 283–
294, 2005.

[31] WimMartens and Frank Neven. Typechecking top-down uni-
form unranked tree transducers. In 9th International Confer-
ence on Database Theory, volume 2572 of LNCS. Springer-
Verlag, January 2003.

[32] Wim Martens and Frank Neven. Frontiers of tractability for
typechecking simple XML transformations. In Proc. 23rd
ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS ’04, pages 23–34, 2004.

[33] Tova Milo, Dan Suciu, and Victor Vianu. Typechecking for
XML transformers. Journal of Computer and System Sci-
ences, 66:66–97, February 2002.

[34] Mehryar Mohri and Mark-Jan Nederhof. Robustness in Lan-
guage and Speech Technology, chapter 9: Regular Approx-
imation of Context-Free Grammars through Transformation.
Kluwer Academic Publishers, 2001.

[35] Anders Møller. Static analysis for event-based XML process-
ing. Technical Report RS-06-16, BRICS, October 2006.

[36] Anders Møller, Mads Østerby Olesen, and Michael I.
Schwartzbach. Static validation of XSL Transformations.
Technical Report RS-05-32, BRICS, 2005. Draft, accepted
for ACM TOPLAS.

[37] Anders Møller and Michael I. Schwartzbach. The design
space of type checkers for XML transformation languages.
In Proc. 10th International Conference on Database Theory,
ICDT ’05, volume 3363 of LNCS, pages 17–36. Springer-
Verlag, January 2005.

[38] Makoto Murata, Dongwon Lee, Murali Mani, and Kohsuke
Kawaguchi. Taxonomy of XML schema languages using for-
mal language theory. ACM Transactions on Internet Technol-
ogy, 5(4):660–704, 2005.

[39] Henry S. Thompson, David Beech, Murray Maloney, and
Noah Mendelsohn. XML Schema part 1: Structures
second edition, October 2004. W3C Recommendation.
http://www.w3.org/TR/xmlschema-1/.

[40] Akihiko Tozawa. Towards static type checking for XSLT.
In Proc. ACM Symposium on Document Engineering, Do-
cEng ’01, November 2001.

[41] Raja Vallee-Rai, Laurie Hendren, Vijay Sundaresan, Patrick
Lam, Etienne Gagnon, and Phong Co. Soot – a Java optimiza-
tion framework. In Proc. IBM Centre for Advanced Studies
Conference, CASCON ’99. IBM, November 1999.

	Introduction
	XML Graphs
	Definition
	Relations to Other Formalisms
	Operations on XML Graphs
	Implementation

	Four Applications of XML Graphs
	Xact
	Java Servlets and JSP
	XSugar
	XSLT

	Conclusion

