Cumulative inductive types in Coq

Amin Timany!, Matthieu Sozeau?, and Bart Jacobs!

! imec-Distrinet, KU Leuven, Belgium, firstname.lastname@cs.kuleuven.be
2 Tnria Paris & IRIF, France, matthieu.sozeau@inria.fr

In order to avoid well-know paradoxes associated with self-referential definitions, higher-
order dependent type theories stratify the theory using a countably infinite hierarchy of uni-
verses (also known as sorts), Set = Typeq : Type; : - - -. Such type systems are called cumulative
if for any type T" we have that T : Type; implies T : Type;+1. The predicative calculus of in-
ductive constructions (pCIC) [2, 3] at the basis of the Coq proof assistant, is one such system.

Earlier work [4] on universe-polymorphism in Coq allows constructions to be polymorphic
in universe levels. The quintessential universe-polymorphic construction is the polymorphic
definition of categories: Record Category; ; := {0bj : Type;; Hom : Obj — Obj — Typej; - - -}.!

However, pCIC does not extend the subtyping relation (induced by cumulativity) to induc-
tive types. As aresult there is no subtyping relation between instances of a universe polymorphic
inductive type. That is, for a category C, having both C : Category:; and C: Category; j is
only possible if 1 = i’ and j = j’. In previous work Timany et al. [5] extend pCIC to pCulC
(predicative Calculus of Cumulative Inductive Constructions). This is essentially the system
pCIC with a single subtyping rule added to it:?

C-IND
I=(Ind(X : 117 : N. s){Ilz : M,. X mi, ..., 14, : Mn X mn})
I'=(Ind(X : 117 : N'. {17]\Z{ X Tr_L"l, AU I P M’V’l X rr:’n})
Vi. N; < N'; Vi, j. (M;); = (M]); length(im) = length(Z) Vi. X i; ~ X m)
Im=<I'm

The two terms I and I’ are two inductive definitions (type constructors®) with indexes of types
N and N respectively. They are respectively in sorts (universes) s and s’. They each have n
constructors, the it? constructor being of type Iz} : Mi. X m; and Ilz; :]\712’ . X n;; for I and
I’ respectively. With this out of the way, the reading of the rule C-Ind is now straightforward.
The type I m is a subtype of the type I’ m if the corresponding parameters of corresponding
constructors in I are sub types of those of I’. In other words, if the terms ¢ can be applied to the
i*? constructor of I to construct a term of type I i then the same terms ¥ can be applied to the
corresponding constructor of I’ to construct a term of type I’ m. Using the rule C-Ind above
(in the presence of universe polymorphism) we can derive Category; ; = Category;s ;; whenever
i<i’andj<j’

The category theory library by Timany et al. [6] represents (relative) smallness and large-
ness of categories through universe levels. Smallness and largeness side-conditions for con-
structions are inferred by the kernel of Coq. In loc. cit. the authors prove a well-known
theorem stating that any small and complete category is a preorder category. Coq infers that
this theorem can apply to a category C: Category;; if j < i and thus not to the category
Types@{i} : Category; i+1 of types at level i (and functions between them) which is complete
but not small. In a system with the rule C-Ind we have Types@{i} : Categoryy: for i <k,
i+1<1 and 1 <k. However, subtyping would not allow for the proof of completeness of

1Records in Coq are syntactic sugar for an inductive type with a single constructor.
2The rule C-Ind is slightly changed here so that it applies to template polymorphism explained below.
3Not to be confused with constructors of inductive types

Cumulative inductive types in Coq Timany, Sozeau, Jacobs

Types@{i} to be lifted as required. Intuitively, that would require the category to have limits of
all functors from possibly larger categories.

Template Polymorphism Before the addition of full universe polymorphism to Coq, the
system enjoyed a restricted form of polymorphism for inductive types, which was since coined
template polymorphism. The idea was to give more precise types to applications of inductive
types to their parameters, so that e.g. the inferred type of list nat is Typeq instead of Type;
for a global type level i.

- — —
Technically, consider an inductive type I of arity VP, A — s where P are the parameters

—
and A the indices. When the type of the n-th parameter is Type; for some level [and [occurs
in the sort s (and nowhere else), the inductive is made parametric on I. When we infer the type

of an application of I to parameters p, we compute its type as VZ — s[l'/1] where p,, : Typey,
using the actual inferred types of the parameters.

This extension allows to naturally identify list(nat : Set) and list(nat : Type;) by con-
vertibility, whereas with full universe polymorphism when comparing to 1ist@{Set} (nat : Set)
and 1ist@{i} (nat : Type;) with Set < ¢ we would fail as equating i and Set is forbidden. With
our new rule, this conversion will be validated as these two 1ist instances become convertible.
Indeed, convertibility on inductive applications will now be defined as cumulativity in both di-
rections and in this case 1ist@{i} cumulativity imposes no constraint on its universe variable.
This change will allow a complete compatibility with template polymorphism.

Consistency and Strong Normalization The model constructed for pCIC by Lee et al.
[3] is a set theoretic model that for inductive types considers the (fixpoints of the function
generated by) constructors applied to all applicable terms. Therefore, the model readily includes
all elements of the inductive types including those added by the rule C-Ind. Hence it is only
natural to expect (and it is our conjecture that) the same model proves consistency of Coq
when extended with the rule C-Ind. We are investigating using the abstract framework of B.
Barras [1] to prove Strong Normalization with this extension.

Implementation The rule C-Ind above can be implemented in Coq very efficiently. The idea
is that as soon as we define an inductive type, we compare two fresh instances of it (with two
different sets of universe variables) to compute the set of constraints necessary for the subtyping
relation to hold on different instances of that inductive type. Subsequent comparisons during
type checking/inference will use these constraints. It is our plan to implement the rule C-Ind for
the next release of Coq (Coq 8.7) and accordingly remove support for template polymorphism.

References

[1] Bruno Barras. Semantical Investigation in Intuitionistic Set Theory and Type Theoris with Inductive
Families. PhD thesis, University Paris Diderot — Paris 7, 2012. Habilitation thesis.

[2] Coq Development Team. Coq reference manual, 2016. Available at https://coq.inria.fr/doc/.

[3] Gyesik Lee and Benjamin Werner. Proof-irrelevant model of CC with predicative induction and
judgmental equality. Logical Methods in Computer Science, 7(4), 2011.

[4] Matthieu Sozeau and Nicolas Tabareau. Universe polymorphism in Coq. In Interactive Theorem
Proving - 5th International Conference, ITP 2014, Proceedings, pages 499-514, 2014.

[6] Amin Timany and Bart Jacobs. First steps towards cumulative inductive types in CIC. In Theo-
retical Aspects of Computing - ICTAC 2015, Proceedings, pages 608-617, 2015.

[6] Amin Timany and Bart Jacobs. Category theory in coq 8.5. In Conference on Formal Structures
for Computation and Deduction, FSCD 2016, Proceedings, pages 30:1-30:18, 2016.

https://coq.inria.fr/doc/

